Lesson 2. The Shortest Path Problem, cont.

1 Examples

Example 1. The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. The company must supply 30 batches in the next quarter, then 25,10 , and 35 in successive quarters. Each quarter in which the company produces the beer requires a factory setup cost of $\$ 100,000$. Each batch of beer costs $\$ 3,000$ to produce. Batches can be held in inventory, but due to refrigeration requirements, the cost is a high $\$ 5,000$ per batch per quarter. The company wants to find a production plan that minimizes its total cost. Formuate this problem as a shortest path problem.

Example 2. Beverly owns a vacation home in Cape Fulkerson that she wishes to rent for the summer season (May 1 to September 1). She has solicited bids from eight potential renters:

Renter	Rental start date	Rental end date	Amount of bid (\$)
1	May 1	June 1	1800
2	May 1	July 1	3400
3	June 1	July 1	2000
4	June 1	August 1	4000
5	June 1	September 1	4800
6	July 1	August 1	1600
7	July 1	September 1	3200
8	August 1	September 1	1400

A rental starts at 15:00 on the start date, and ends at 12:00 on the end date. As a result, one rental can end and another rental can start on the same day. However, only one renter can occupy the vacation home at any time.

Beverly wants to identify a selection of bids that would maximize her total revenue. Formulate Beverly's problem as a shortest path problem.

2 Longest paths and negative cycles

- We saw in the previous example that formulating a shortest path problem with negative edge lengths often makes sense, especially when a problem is naturally formulated as a longest path problem
- This can sometimes be problematic!

Example 3. Find the shortest path from node 1 to node 4 in the following digraph:

\square

- Remember that a path can visit each node at most once
- A cycle in a digraph is a path from a source node s to a target node t plus an $\operatorname{arc}(t, s)$
- A negative cycle has negative total length
- For example: $(2,3),(3,4),(4,2)$ in the digraph above
- Negative cycles make things complicated: if we traverse a negative cycle, we can reduce the cost of getting point A to point B infinitely
- Shortest path problems with negative cycles harder to solve
- Standard shortest path algorithms fail when the digraph has a negative cycle
- Having a negative cycle in your shortest path problem might indicate (i) your problem will be hard to solve, or (ii) there is a mistake in your formulation!

